70. 爬楼梯

描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

解题思路

经典动态规划题目,找出状态转移方程f(n) = f(n-1) +f(n-2)即可解题.

代码如下:

class Solution {
    public int climbStairs(int n) {
        if (n == 1) {
            return 1;
        } else if (n == 2) {
            return 2;
        } else {
            int[] opt = new int[n];
            opt[0] = 1;
            opt[1] = 2;
            for (int i = 2; i < opt.length; i++) {
                opt[i] = opt[i - 1] + opt[i - 2];
            }
            return opt[n-1];
        }
    }}

运行结果

8:46    info
                    解答成功:
                    执行耗时:0 ms,击败了100.00% 的Java用户
                    内存消耗:35.2 MB,击败了66.59% 的Java用户

题解

方法一:动态规划

class Solution {
    public int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法二:矩阵快速幂

矩阵快速幂
如何想到

public class Solution {
    public int climbStairs(int n) {
        int[][] q = {{1, 1}, {1, 0}};
        int[][] res = pow(q, n);
        return res[0][0];
    }

    public int[][] pow(int[][] a, int n) {
        int[][] ret = {{1, 0}, {0, 1}};
        while (n > 0) {
            if ((n & 1) == 1) {
                ret = multiply(ret, a);
            }
            n >>= 1;
            a = multiply(a, a);
        }
        return ret;
    }

    public int[][] multiply(int[][] a, int[][] b) {
        int[][] c = new int[2][2];
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
            }
        }
        return c;
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法三:通项公式

通项公式.png

public class Solution {
    public int climbStairs(int n) {
        double sqrt5 = Math.sqrt(5);
        double fibn = Math.pow((1 + sqrt5) / 2, n + 1) - Math.pow((1 - sqrt5) / 2, n + 1);
        return (int) Math.round(fibn / sqrt5);
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/climbing-stairs/solution/pa-lou-ti-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

小结

动态规划的状态转移方程,感觉就是高中数列题,找出间接规律即可.
还有,程序的尽头是数学(雾)

添加新评论